If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=4Y^2+24Y-23
We move all terms to the left:
-(4Y^2+24Y-23)=0
We get rid of parentheses
-4Y^2-24Y+23=0
a = -4; b = -24; c = +23;
Δ = b2-4ac
Δ = -242-4·(-4)·23
Δ = 944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{944}=\sqrt{16*59}=\sqrt{16}*\sqrt{59}=4\sqrt{59}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-4\sqrt{59}}{2*-4}=\frac{24-4\sqrt{59}}{-8} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+4\sqrt{59}}{2*-4}=\frac{24+4\sqrt{59}}{-8} $
| 5a-5=190 | | 8n(n+3)=7(n+4) | | X2+3x-168=0 | | 9b-5=-311 | | -4x-5=-10x-45 | | -88+11z=173+2z | | -49+12b=71+7b | | 5x-5=155 | | -1=x+2x=7 | | 12a+9=11a-18 | | 2r+8=-58 | | 11/5+x=1 | | (x+21)=(2x+9)=90 | | 5y-3-3y=3y+5-3 | | -56=7(x- | | 4y=-2y-102 | | 9p+7=385 | | 11x=x+50 | | 3p=-132-9p | | 59=-u/4 | | 8c=5c+9 | | 7x+2=3x+23 | | 3x-1=-2x=39 | | Y=7x+1/4x-5 | | -3/4a+3/5=1/2 | | -0.02x^2+3.6x+196=0 | | 2x2+3x=-5x | | 7y=5y-5 | | 0.4(x−0.5)=0.2(x+3) | | 7x2+8x=7x-9x2 | | x/5+x=10 | | 2x+42+3x+6=180 |